1. The area bounded by the curve $y=2 x-x^{2}$ and the line $y=-2$ is given by
(A) $\frac{32}{3}$
(B) 3
(C) $\frac{16}{3}$
(D) none of these
2. The value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \sin ^{2} x d x$ is
(A) 0
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) π
3. $\int \frac{d x}{x^{2}+36}$ is equal to
(A) $\frac{1}{6} \cot ^{-1} \frac{x}{6}+c$
(B) $\frac{1}{6} \tan ^{-1} \frac{x}{6}+c$
(C) $\frac{1}{6} \sin ^{-1} \frac{x}{6}+c$
(D) none of these
4. $\int \cos x$. $\ln \tan \frac{x}{2} d x$ is equal to
(A) $\sin x \cdot \ln \tan \frac{x}{2}+x+c$
(B) $\sin x \cdot \ln \tan \frac{x}{2}-x+c$
(C) $-\sin x \cdot \ln \tan \frac{x}{2}-1+c$
(D) none of these
5. The value of the integral $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1+2 \cos x}{(2+\cos x)^{2}}$ is
(A) $\frac{1}{8}$
(B) $-\frac{1}{8}$
(C) $-\frac{1}{4}$
(D) $\frac{1}{4}$
6. $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$ is equal to
(A) $\frac{\pi}{4}$
(B) $\frac{\pi^{2}}{32}$
(C) 1
(D) none of these
7. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}=6 x-4$ satisfying $y(0)=1, y^{\prime}(0)=1$ is
(A) $y=x^{3}-2 x^{2}+1$
(B) $y=1-x^{3}+2 x^{2}$
(C) $y=x^{3}+2 x^{2}-x$ (D) $y=x^{3}-2 x^{2}+x$
8. A differential equation which represents the family of curves $y=e^{\alpha x}$ is
(A) $y^{\prime}=\alpha y$
(B) $x y^{\prime}-\ln y=0$
(C) $x \ln y=y y^{\prime}$
(D) $y \ln y=x y^{\prime}$
9. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}=\left\{y+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{1}{3}}$ is
(A) 3,2
(B) 1,2
(C) 1,3
(D) 2,3
10. The solution of the differential equation $\frac{d y}{d x}=\frac{y-x}{y+x}$ is
(A) $\ln \left(\frac{x^{2}+y^{2}}{x^{2}}\right)+2 \tan ^{-1} \frac{y}{x}=c$
(B) $\frac{y^{2}}{2}+x y=\frac{x^{3}-x^{2}}{2}+c$
(C) $\left(1+\frac{x}{y}\right) y=\left(1-\frac{x}{y}\right)+c$
(D) $y=x-2 \ln y+c$
11. Solution of the differential equation $\frac{d y}{d x}+2 y=e^{x}$ is
(A) $3 y=e^{x}+c$
(B) $y e^{2 x}=e^{x}+c$
(C) $y=e^{x}+c e^{-2 x}$
(D) $3 y=e^{x}+c e^{-2 x}$
12. The variance of first 20 natural numbers is
(A) $\frac{401}{12}$
(B) $\frac{399}{12}$
(C) $\frac{287}{2}$
(D) none of these
13. 5 boys and 5 girls sit in a row randomly. Then the probability that all 5 girls sit together is
(A) $\frac{1}{32}$
(B) $\frac{1}{4}$
(C) $\frac{1}{42}$
(D) none of these
14. A bag contains 8 white and 6 red balls. Then the probability of drawing two balls of the same colour is
(A) $\frac{28}{91}$
(B) $\frac{15}{91}$
(C) $\frac{43}{91}$
(D) none of these
15. $\lim _{x \rightarrow 0}(\sin x+\cos x)^{\frac{1}{x}}$ is equal to
(A) e
(B) e^{2}
(C) $\frac{1}{e}$
(D) 1
16. $\lim _{x \rightarrow 1} \frac{x^{20}-1}{x-1}$ is equal to
(A) 0
(B) 10
(C) 20
(D) none of these
17. The value of ' a ' for which the function $f(x)=\left\{\begin{array}{ll}a x-1, & x<2 \\ 2 x-3, & x \geq 2\end{array}\right.$ is continuous at $x=2$ is
(A) 0
(B) 2
(C) 1
(D) 4
18. A function f is defined by $f(x)=2 e^{x} \sin x$ in $[0, \pi]$, then which of the following is not Correct?
(A) f is continuous in $[0, \pi]$
(B) f is differentiable in $[0, \pi]$
(C) $f(0)=f(\pi)$
(D) Rolle's theorem is not true in [0, π]
19. If $f(x)=2 x|x|$, then $f(x)$ is
(A) continuous as well as differentiable in $[-1,1]$
(B) continuous but not differentiable in $[-1,1]$
(C) differentiable but not continuous in $[-1,1]$
(D) none of these
20. If $x=y \sqrt{1-x^{2}}$, then $\frac{d y}{d x}$ is equal to
(A) y
(B) $\frac{\sqrt{1-x^{2}}}{1+2 x^{2}}$
(C) $\frac{\sqrt{1-y^{2}}}{1-2 y^{2}}$
(D) 0
21. If $y=\ln \ln x$, then $e^{y} \frac{d y}{d x}$ is equal to
(A) $\frac{1}{x \ln x}$
(B) $\ln x$
(C) $\frac{1}{\ln x}$
(D) $\frac{1}{x}$
22. The equation of the tangent at the point $(1,1)$ to the curve $2 y=4-x^{2}$ is
(A) $x+y=0$
(B) $x+y+1=0$
(C) $x-y+1=0$
(D) $x+y=2$
23. The maximum value of $2 x^{3}+3 x^{2}-12 x+4$ for $-3 \leq x<4$ occurs at $x=$
(A) 2
(B) 4
C) 1
(D) -2
24. If $=\sin ^{-1} \frac{x}{y}+\tan ^{-1} \frac{y}{x}$, then $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ is equal to
(A) $\sin z$
(B) $\tan z$
(C) 0
(D) none of these
25. If $y=(2 x+3)^{9}$, then $y^{(5)}\left(y^{(n)}\right.$ denotes the n -th order derivative $)$ is equal to
(A) 9.8.7.6.5 $\times 2^{5}(2 x+3)^{5}$
(B) $9.8 .7 .6 .5 \times 2^{5}(2 x+3)^{4}$
(C) $9.8 .7 .6 .5 \times 2^{4}(2 x+3)^{5}$
(D) $9.8 .7 .6 .5 \times 2^{4}(2 x+3)^{4}$
26. The sum of the series $1+3 x+6 x^{2}+10 x^{2}+\cdots \infty$ is (here $|x|<1$)
(A) $\frac{1}{(1-x)^{2}}$
(B) $\frac{1}{1-x}$
(C) $\frac{1}{(1+x)^{2}}$
(D) $\frac{1}{(1-x)^{3}}$
27. If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, the $\frac{1}{2}|\vec{a}-\vec{b}|$ is equal to
(A) $\frac{1}{2}\left|\sin \frac{\theta}{2}\right|$
(B) $\left|\sin \frac{\theta}{2}\right|$
(C) $2\left|\sin \frac{\theta}{2}\right|$
(D) none of these
28. If \vec{a}, \vec{b} and \vec{c} are any three vectors, then $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c} \quad$ only if
(A) \vec{b} and \vec{c} are collinear
(B) \vec{a} and \vec{c} are collinear
(C) \vec{a} and \vec{b} are collinear
(D) none of these
29. If $2 x^{2}+3 x-2 \leq 0$, then
(A) $x \leq-2$
(B) $-2 \leq x \leq \frac{1}{2}$
(C) $x \geq-2$
(D) $x \leq \frac{1}{2}$
30. The smallest value of $x^{2}-3 x+3$ in $(-3,3)$ is
(A) -18
(B) -14
(C) $\frac{3}{4}$
(D) none of these
31. The direction cosines of any normal to the $x y$-plane are
(A) $1,0,0$
(B) $0,1,0$
(C) $1,1,0$
(D) $0,0,1$
32. The distance of the point $(1,3,-2)$ from the plane $x+y-z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z-1}{-6}$ is
(A) $\frac{5}{11}$
(B) $\frac{3}{11}$
(C) $\frac{7}{11}$
(D) none of these
33. The shortest distance from the plane $12 x+4 y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is
(A) 26
(B) 23
(C) 13
(D) none of these
34. If the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$ is parallel to the plane $a x+b y+c z+d=0$, then
(A) $\frac{a}{l}=\frac{b}{m}=\frac{c}{n}$
(B) $a l+b m+c n=0$
(C) $\frac{a}{l}+\frac{b}{m}+\frac{c}{n}=0$
(D) none of these
35. The equation of the straight line passing through the point of intersection of the lines $x-y=2$ and $2 x-3 y+1=0$ and parallel to the line $3 x+4 y=16$ is
(A) $3 x+4 y+41=0$
(B) $3 x+4 y-41=0$
(C) $4 x+3 y+41=0$
(D) $4 x+3 y-41=0$
36. If the slope of one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ be the square of the other, then
(A) $a b(a+b)+6 a b h+8 h^{3}=0$
(B) $a b(a+b)-6 a b h+8 h^{3}=0$
(C) $a b(a+b)+3 a b h+4 h^{3}=0$
(D) none of these
37. If $(1,-1)$ lies on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ which is concentric with the circle $x^{2}+y^{2}+4 x-6 y+3=0$, then the value of c is
(A) 12
(B) -12
(C) 14
(D) -14
38. If $(6,0)$ is the vertex and y - axis is the directrix of a parabola, then its focus is
(A) $(8,0)$
(B) $(4,0)$
(C) $(12,0)$
(D) none of these
39. The eccentricity of the ellipse $9 x^{2}+5 y^{2}-30 y=0$ is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{3}{4}$
(D) none of these
40. An equation of the tangent to the hyperbola $3 x^{2}+4 y^{2}=3$, which is perpendicular to the line $x+3 y-7=0$ is
(A) $y=3 x+\sqrt{6}$
(B) $y=-3 x+\sqrt{6}$
(C) $y=3 x-6$
(D) none of these
41. If $\alpha+\beta=45^{\circ}$, then $(1+\tan \alpha)(1+\tan \beta)$ is equal to
(A) 1
(B) -1
(C) 2
(D) none of these
42. The most general solution of $\tan \theta=-1$ and $\cos \theta=\frac{1}{\sqrt{2}}$ is
(A) $n \pi+\frac{7 \pi}{4}$
(B) $n \pi+(-1)^{n} \frac{7 \pi}{4}$
(C) $2 n \pi+\frac{7 \pi}{4}$
(D) none of these
(here n is an integer)
43. The value of $\sin \left(\frac{\pi}{2}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to
(A) $\frac{\sqrt{3}}{2}$
(B) $-\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2}$
(D) none of these
44. In a triangle $A B C$ if $b+c=3 a$, then $\tan \frac{B}{2} \tan \frac{C}{2}$ is equal to
(A) $\frac{1}{3}$
(B) 1
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
45. If $\alpha+\beta+\gamma=\frac{\pi}{2}$, then the value of $\tan \alpha \tan \beta+\tan \beta \tan \gamma+\tan \gamma \tan \alpha$ will be
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{3}{2}$
(D) none of these
46. The minor of ' 2 ' in the determinant $\left|\begin{array}{ccc}1 & 2 & 0 \\ 3 & -1 & 4 \\ -2 & 0 & 3\end{array}\right|$ is
(A) 0
(B) 17
(C) -17
(D) -15
47. If the value of a third order determinant is 8 , then the value of the determinant formed by its cofactor is
(A) 8
(B) 24
(C) 32
(D) 64
48. The value of the determinant $\left|\begin{array}{ccc}2 & 3 & 5 \\ 4 & 6 & 9 \\ 8 & 11 & 15\end{array}\right|$ is
(A) -2
(B) 2
(C) 4
(D) -4
49. The system of linear equations $x+y+z=2,2 x+y-z=3,3 x+2 y+k z=4$ has a unique solution if
(A) $k \neq 0$
(B) $-1<k<1$
(C) $-2<k<2$
(D) $k=0$
50. Let z be a complex number with modules 4 and argument $\frac{2 \pi}{3}$, then z is equal to
(A) $-2+i 2 \sqrt{3}$
(B) $2-i 2 \sqrt{3}$
(C) $-1+i \sqrt{3}$
(D) none of these
51. If $\left(\frac{1+\cos \theta+i \sin \theta}{\sin \theta+i+i \cos \theta}\right)^{n}=\cos (n \theta)+i \sin (n \theta)$, then n is equal to
(A)2
(B) 3
(C) 4
(D) none of these
52. If the geometric mean between two non-negative numbers a and b be same as the harmonic mean, then $2 \frac{a}{b}$ is equal to
(A) 2
(B) 1
(C) $\frac{1}{2}$
(D) none of these
53. The number of ways in which 5 letters can be posted in 6 letter boxes in a town is
(A) 6^{5}
(B) 5^{6}
(C) ${ }^{6} P_{5}$
(D) ${ }^{6} C_{5}$
54. The number of proper divisors (excluding 1, and itself) of 252 is
(A) 46
(B) 47
(C) 56
(D) none of these
55. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}$, then $C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\cdots \frac{C_{10}}{11}$ is equal to
(A) 2^{11}
(B) $\frac{2^{11}-1}{11}$
(C) $\frac{2^{11}}{11}$
(D) none of these
56. If the set A has 4 elements, B has 5 elements, then the number of elements in $A \times B$ is
(A) 10
(B) 20
(C) 16
(D) 9
57. Let R be a relation on the set of natural numbers \mathbb{N} such that $m R n$ if m is a factor of n, (here, n are elements of \mathbb{N}) then the relation is
(A) reflexive and symmetric
(B) reflexive and transitive
(C) equivalence relation
(D) transitive but not reflexive
58. Let $f:(0, \infty) \rightarrow(0, \infty)$ be defined by $(x)=10 x^{2}, x \in(0, \infty)$, then f is
(A) one to one but not onto
(B) onto but not one-to-one
(C) bijective
(D) neither one-to-one nor onto
59. Which of the following is a statement
(A) shut the door
(B) listen to me
(C) is $9 \times 3=27$?
(D) 15 is less than 3
60. The binary representation of 13 is
(A) 1001
(B) 1101
(C) 1011
(D) 1110
