1. The area bo	unded by the curve y	$y = 2x - x^2$ and the lin	e $y = -2$ is given by
(A) $\frac{32}{3}$	(B) 3	(C) $\frac{16}{3}$	(D) none of these
2. The value of	f the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \sin \theta$	$a^2 x dx$ is	
(A) 0	(B) $\frac{\pi}{}$	(C) $\frac{\pi}{}$	(D) π

3. $\int \frac{dx}{x^2+36}$ is equal to (A) $\frac{1}{6}cot^{-1}\frac{x}{6}+c$ (B) $\frac{1}{6}tan^{-1}\frac{x}{6}+c$ (C) $\frac{1}{6}sin^{-1}\frac{x}{6}+c$ (D) none of these

4. $\int \cos x \cdot \ln \tan \frac{x}{2} dx$ is equal to

(A) $\sin x \cdot \ln \tan \frac{x}{2} + x + c$ (B) $\sin x \cdot \ln \tan \frac{x}{2} - x + c$ (C) $-\sin x \cdot \ln \tan \frac{x}{2} - 1 + c$ (D) none of these

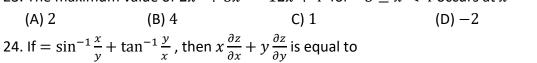
5. The value of the integral $\frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1 + 2\cos x}{(2 + \cos x)^2}$ is

(A) $\frac{1}{8}$ (B) $-\frac{1}{8}$ (C) $-\frac{1}{4}$ (D) $\frac{1}{4}$

6. $\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx$ is equal to (C) 1 (D) none of these

7. The solution of the differential equation $\frac{d^2y}{dx^2} = 6x - 4$ satisfying y(0) = 1, y'(0) = 1 is (A) $y = x^3 - 2x^2 + 1$ (B) $y = 1 - x^3 + 2x^2$ (C) $y = x^3 + 2x^2 - x$ (D) $y = x^3 - 2x^2 + x$

9. The order and degree of the differential equation $\frac{d^2y}{dx^2} = \left\{ y + \left(\frac{dy}{dx}\right)^2 \right\}^{\frac{1}{3}}$ is (A) 3,2 (B) 1,2 (C) 1,3 (D) 2,3


10. The solution of the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ is

(A) $\ln\left(\frac{x^2+y^2}{x^2}\right) + 2\tan^{-1}\frac{y}{x} = c$ (B) $\frac{y^2}{2} + xy = \frac{x^3-x^2}{2} + c$ (C) $\left(1 + \frac{x}{y}\right)y = \left(1 - \frac{x}{y}\right) + c$ (D) $y = x - 2\ln y + c$

11. Solution of the differential equation $\frac{dy}{dx} + 2y = e^x$ is (A) $3y = e^x + c$ (B) $ye^{2x} = e^x + c$ (C) $y = e^x + ce^{-2x}$ (D) $3y = e^x + ce^{-2x}$

12. The variance of fi	rst 20 natural numbers	s is	
$(A)^{\frac{401}{12}}$	(B) $\frac{399}{12}$	(C) $\frac{287}{2}$	(D) none of these
13. 5 boys and 5 girls is	sit in a row randomly.	Then the probability t	hat all 5 girls sit together
(A) $\frac{1}{32}$	(B) $\frac{1}{4}$	(C) $\frac{1}{42}$	(D) none of these
14. A bag contains 8 v	white and 6 red balls. T	Then the probability of	drawing two balls of the
(A) $\frac{28}{91}$	(B) $\frac{15}{91}$	(C) $\frac{43}{91}$	(D) none of these
$15. \lim_{x \to 0} (\sin x + \cos x)$		1	
(A) <i>e</i>	(B) e^2	(C) $\frac{1}{e}$	(D) 1
16. $\lim_{x\to 1} \frac{x^{20}-1}{x-1}$ is eq	qual to		
(A) 0	(B) 10	(C) 20	(D) none of these
	or which the function f	$F(x) = \begin{cases} ax - 1, & x < \\ 2x - 3, & x \ge \end{cases}$	$\frac{2}{2}$ is continuous at $x = 2$
is (A) 0	(B) 2	(C) 1	(D) 4
Correct? (A) f is continuo (B) f is differenti (C) $f(0) = f(\pi)$	ous in $[0,\pi]$ able in $[0,\pi]$ m is not true in $[0,\pi]$	in x in $[0,\pi]$, then wh	ich of the following is not
(B) continuous bu	well as differentiable it not differentiable in but not continuous in	[-1,1]	
20. If $x = y\sqrt{1 - x^2}$,	then $\frac{dy}{dx}$ is equal to		
(A) <i>y</i>	(B) $\frac{\sqrt{1-x^2}}{1+2x^2}$	(C) $\frac{\sqrt{1-y^2}}{1-2y^2}$	(D) 0

21. If $y = \ln \ln x$, the (A) $\frac{1}{x \ln x}$	n $e^y \frac{dy}{dx}$ is equal to (B) $\ln x$	(C) $\frac{1}{\ln x}$	(D) $\frac{1}{x}$
-		t (1,1) to the curve 2y (C) $x - y + 1 = 0$	
22. The maximum va	$\frac{1}{1}$ of $\frac{2}{3}$ $\frac{3}{1}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$	lar 1 1 for 2 day	1 a a a ura a t <i>a</i> a

y = 2

(A)
$$\sin z$$
 (B) $\tan z$ (C) 0 (D) none of these

25. If
$$y = (2x+3)^9$$
, then $y^{(5)}$ ($y^{(n)}$ denotes the n-th order derivative) is equal to (A) $9.8.7.6.5 \times 2^5 (2x+3)^5$ (B) $9.8.7.6.5 \times 2^5 (2x+3)^4$ (C) $9.8.7.6.5 \times 2^4 (2x+3)^5$ (D) $9.8.7.6.5 \times 2^4 (2x+3)^4$

26. The sum of the series
$$1 + 3x + 6x^2 + 10x^2 + \dots \infty$$
 is (here $|x| < 1$)

(A) $\frac{1}{(1-x)^2}$ (B) $\frac{1}{1-x}$ (C) $\frac{1}{(1+x)^2}$ (D) $\frac{1}{(1-x)^3}$

27. If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, the $\frac{1}{2}|\vec{a}-\vec{b}|$ is equal to (A) $\frac{1}{2} \left| \sin \frac{\theta}{2} \right|$ (C) $2 \left| \sin \frac{\theta}{2} \right|$ (B) $\left|\sin\frac{\theta}{2}\right|$ (D) none of these

- 28. If \vec{a} , \vec{b} and \vec{c} are any three vectors, then $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ only if (A) \vec{b} and \vec{c} are collinear (B) \vec{a} and \vec{c} are collinear
 - (C) \vec{a} and \vec{b} are collinear (D) none of these

30. The smallest value of $x^2 - 3x + 3$ in (-3,3) is (A) - 18(B) -14(D) none of these

31. The direction cosines of any normal to the xy -plane are (A) 1,0,0(B) 0,1,0(C) 1,1,0(D) 0,0,1

32. The distance of the point (1,3,-2) from the plane x+y-z=5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z-1}{-6}$ is

/۸۱	5	
(~)	11	

(B)
$$\frac{3}{11}$$

(C)
$$\frac{7}{11}$$

(D) none of these

33. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere

$$x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$$
 is

- (A) 26
- (B) 23
- (C) 13
- (D) none of these
- 34. If the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is parallel to the plane ax + by + cz + d = 0, then
 - $(A)\frac{a}{l} = \frac{b}{m} = \frac{c}{m}$

(B) al + bm + cn = 0

(C) $\frac{a}{l} + \frac{b}{m} + \frac{c}{n} = 0$

- (D) none of these
- 35. The equation of the straight line passing through the point of intersection of the lines x - y = 2 and 2x - 3y + 1 = 0 and parallel to the line 3x + 4y = 16 is
 - (A) 3x + 4y + 41 = 0

(B) 3x + 4y - 41 = 0

(C) 4x + 3y + 41 = 0

- (D) 4x + 3y 41 = 0
- 36. If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ be the square of the other, then
 - (A) $ab(a+b) + 6abh + 8h^3 = 0$
- (B) $ab(a + b) 6abh + 8h^3 = 0$
- (C) $ab(a + b) + 3abh + 4h^3 = 0$
- (D) none of these
- 37. If (1,-1) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with the circle $x^2 + y^2 + 4x - 6y + 3 = 0$, then the value of c is
 - (A) 12
- (B) -12
- (C) 14
- (D) 14
- 38. If (6,0) is the vertex and y- axis is the directrix of a parabola, then its focus is
 - (0,8)
- (B)(4,0)
- (C)(12,0)
- (D) none of these
- 39. The eccentricity of the ellipse $9x^2 + 5y^2 30y = 0$ is
 - $(A)^{\frac{1}{2}}$
- (B) $\frac{2}{3}$ (C) $\frac{3}{4}$
- (D) none of these
- 40. An equation of the tangent to the hyperbola $3x^2 + 4y^2 = 3$, which is perpendicular to the line x + 3y - 7 = 0 is

 - (A) $y = 3x + \sqrt{6}$ (B) $y = -3x + \sqrt{6}$ (C) y = 3x 6
- (D) none of these
- 41. If $\alpha + \beta = 45^{\circ}$, then $(1 + \tan \alpha)(1 + \tan \beta)$ is equal to
- (B) -1
- (D) none of these
- 42. The most general solution of $\tan \theta = -1$ and $\cos \theta = \frac{1}{\sqrt{2}}$ is
 - - (A) $n\pi + \frac{7\pi}{4}$ (B) $n\pi + (-1)^n \frac{7\pi}{4}$ (C) $2n\pi + \frac{7\pi}{4}$
- (D) none of these

(here n is an integer)

43. The value of Sin	$\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{1}{2}\right)\right)$ is e	qual to		
$(A)\frac{\sqrt{3}}{2}$	$(B) - \frac{\sqrt{3}}{2}$	(C) $\frac{1}{2}$	(D) none of these	
44. In a triangle ABC if $b+c=3a$, then $\tan\frac{B}{2}\tan\frac{C}{2}$ is equal to				
(A) $\frac{1}{3}$	(B) 1	(C) $\frac{1}{4}$	(D) $\frac{1}{2}$	
45. If $\alpha + \beta + \gamma = \frac{\pi}{2}$, then the value of $\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha$ will be				
(A) 1	4	(C) $\frac{3}{2}$	(D) none of these	
46. The minor of '2' in the determinant $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \\ -2 & 0 & 3 \end{vmatrix}$ is				
(A) 0	(B) 17	0 51	(D) -15	
` ,	hird order determinant	` '		
(A) 8	(B) 24	(C) 32	(D) 64	
			(D) 0 1	
48 . The value of the	determinant $\begin{bmatrix} 2 & 3 \\ 4 & 6 \\ 8 & 11 \end{bmatrix}$	9 is 15		
(A) -2	(B) 2	(C) 4	(D) -4	
49. The system of line has a unique solu	ear equations $x + y + y$	$z = 2, \ 2x + y - z =$	$3, \ 3x + 2y + kz = 4$	
	(B) $-1 < k < 1$	(C) $-2 < k < 2$	(D) $k=0$	
50. Let z be a comple	ex number with modul	os 4 and argument 2π	. then z is equal to	
	ex number with modu.	es 4 and argument $\frac{-}{3}$,	
$(A)-2+i2\sqrt{3}$	(B) $2 - i2\sqrt{3}$	(C) $-1 + i\sqrt{3}$	(D) none of these	
$(A)-2+i2\sqrt{3}$	(B) $2 - i2\sqrt{3}$	$(C) -1 + i\sqrt{3}$	(D) none of these	
$(A)-2+i2\sqrt{3}$	(B) $2 - i2\sqrt{3}$ $= \cos(n\theta) + i\sin(n\theta)$ (B) 3	$(C) -1 + i\sqrt{3}$	(D) none of these	
(A) $-2 + i2\sqrt{3}$ 51. If $\left(\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i+i\cos\theta}\right)^{\frac{1}{2}}$ (A)2	(B) $2 - i2\sqrt{3}$ $= \cos(n\theta) + i\sin(n\theta)$	(C) $-1+i\sqrt{3}$ $ heta$) , then n is equal to (C) 4	(D) none of these (D) none of these	
(A) $-2 + i2\sqrt{3}$ 51. If $\left(\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i+i\cos\theta}\right)^{\frac{1}{2}}$ (A)2	(B) $2 - i2\sqrt{3}$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ (B) 3 $^{n} = \cos(n\theta) + i\sin(n\theta)$ $^{n} = \sin(n\theta) + i\sin(n\theta)$ $^{n} = \sin(n\theta) + i\sin(n\theta)$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ n	(C) $-1+i\sqrt{3}$ $ heta$) , then n is equal to (C) 4	(D) none of these (D) none of these	
(A) $-2 + i2\sqrt{3}$ 51. If $\left(\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i+i\cos\theta}\right)^2$ (A) 2 52. If the geometric reparametric mean, to (A) 2	(B) $2 - i2\sqrt{3}$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ (B) 3 $^{n} = \cos(n\theta) + i\sin(n\theta)$ $^{n} = \sin(n\theta) + i\sin(n\theta)$ $^{n} = \sin(n\theta) + i\sin(n\theta)$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ n	(C) $-1 + i\sqrt{3}$ θ), then n is equal to (C) 4 n-negative numbers a	(D) none of these(D) none of theseand b be same as the(D) none of these	
(A) $-2 + i2\sqrt{3}$ 51. If $\left(\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i+i\cos\theta}\right)^2$ (A) 2 52. If the geometric reparametric mean, to (A) 2	(B) $2 - i2\sqrt{3}$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ (B) 3 $^{n} = \cos(n\theta) + i\sin(n\theta)$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ $^{n} = \sin(n\theta) + i\sin(n\theta)$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ n	(C) $-1 + i\sqrt{3}$ θ), then n is equal to (C) 4 n-negative numbers a	(D) none of these(D) none of theseand b be same as the(D) none of these	
(A) $-2 + i2\sqrt{3}$ 51. If $\left(\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i+i\cos\theta}\right)^{\frac{1}{2}}$ (A) 2 52. If the geometric reparametric mean, to (A) 2 53. The number of we (A) 6^5	(B) $2 - i2\sqrt{3}$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ (B) 3 $^{n} = \cos(n\theta) + i\sin(n\theta)$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ $^{n} = \sin(n\theta) + i\sin(n\theta)$ $^{n} = \cos(n\theta) + i\sin(n\theta)$ n	(C) $-1 + i\sqrt{3}$ θ), then n is equal to (C) 4 n-negative numbers a (C) $\frac{1}{2}$ can be posted in 6 letter (C) 6P_5	(D) none of these (D) none of these and b be same as the (D) none of these er boxes in a town is (D) 6C_5	

55. If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, then $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11}$ is equal to (A) 2^{11} (B) $\frac{2^{11}-1}{11}$ (C) $\frac{2^{11}}{11}$ (D) none of these (A) 10 (B) 20 (C) 16 (D) 9

- 57. Let R be a relation on the set of natural numbers $\mathbb N$ such that mRn if m is a factor of n, (here , n are elements of $\mathbb N$) then the relation is
 - (A) reflexive and symmetric
 - (B) reflexive and transitive
 - (C) equivalence relation
 - (D) transitive but not reflexive
- 58. Let $f:(0,\infty)\to(0,\infty)$ be defined by $(x)=10x^2$, $x\in(0,\infty)$, then f is
 - (A) one to one but not onto
 - (B) onto but not one-to-one
 - (C) bijective
 - (D) neither one-to-one nor onto
- 59. Which of the following is a statement
 - (A) shut the door
 - (B) listen to me
 - (C) is $9 \times 3 = 27$?
 - (D) 15 is less than 3
- 60. The binary representation of 13 is
 - (A) 1001
- (B) 1101
- (C) 1011
- (D) 1110